聚乙二醇(PEG)是一种被广泛应用于蛋白质和多肽等生物聚合物进行共价修饰的高分子材料。PEG化修饰(PEGylation)是将PEG共价结合在药物上,以改善药物的药代动力学、药效学和免疫学特性,从而增强其治疗效果的一种药物技术。
PEG具有无毒、无免疫原性、无抗原性、水溶性好等优点,是当今最常用的高分子材料之一。PEG化修饰会改变药物的物理化学性质,包括构象、静电结合、疏水性等。这些物理和化学变化增加了药物的体内保留时间,提高血浆半衰期,延长吸收时间,还能影响药物与细胞受体的结合亲和力,改善肿瘤靶向性。药物经PEG修饰后可减少给药次数、提高疗效、改善耐受性、降低严重程度和不良事件发生率。同时PEG还可以增加蛋白质的溶解度和稳定性,也有利于药物的生产和储存。因此PEG常被用作药物传递和药物修饰技术,可以直接与药物偶联,或附着在药物表面一起封装于纳米材料里。
自20世纪90年代初以来,聚乙二醇化一直是临床上最成熟的半衰期延长技术,30多年来已在人类身上证明了其安全性。PEG化药物已被大多数国家/地区当局批准供人静脉、口服和皮肤使用。目前,PEG化修饰可被用于修饰蛋白质、多肽、寡核苷酸、抗体片段、有机小分子和纳米颗粒等。
PEG在早期研究中被认为是一种生物惰性材料,不具有免疫原性和抗原性。但最近一些报导显示长期给药会使PEG在组织内富集,可能会导致潜在的组织毒性和不良反应。小于400Da的PEG链在体内被醇脱氢酶代谢为有毒代谢物,如PEG在体内能被代谢为相关酸类代谢物,可能引起危险的高钙血症和酸中毒。游离的PEG和PEG化纳米载体可以作为糖原蛋白和细胞色素P450酶抑制剂,从而改变修饰药物的药代动力学。另外文献报道有识别和结合PEG的抗药抗体,即抗PEG抗体(APA),包括既存的抗体和治疗诱导的抗体。随着越来越多的PEG化产品进入临床,一些报道将抗PEG抗体的产生与治疗效果的降低联系起来,并且在反复给药后,报告的不良反应有所增加。据报道一项III期研究(NCT01848106)因发生严重不良事件(SAEs)而停止,经历SAEs的受试者都比其他受试者具有非常高的预存APA滴度。除了PEG化的蛋白质,聚乙二醇修饰的纳米颗粒,例如脂质体和胶束,也被报道在动物模型中可刺激产生APA。
因此,充分了解PEG和PEG化药物的药代动力学特点和生物分析,对评价其总体安全性和促进技术发展具有重要意义。然而,PEG化药物的结构复杂、内源性干扰明显、分析方法有限,是PEG化药物药代动力学研究和生物分析的一大障碍。修饰性抗体定制,抗体测序及表达,标签蛋白纯化试剂盒
一、PEG修饰药物的结构
PEG聚合物是由环氧乙烷聚合而成,可以构成线性或支链结构。线性PEG 的分子式为H-(O-CH2-CH2)n-OH,只有2 个末端可用于修饰新型偶联药物,因此载药量较低。而支链结构在一个或多个端上具有官能团,如末端呈树枝结构的支链PEG、叉状PEG和多臂PEG等,从而实现多种共轭可能性,且大大增加了载药量。
图1 代表性的PEG结构
注:(A)线性PEG,具有两个游离的羟基末端;(B)线性的单甲氧基- PEG(mPEG),一端的一个羟基转化为甲氧基;(C)支链PEG,两个线性mPEG与赖氨酸的氨基基团相连,其中Y代表连接剂。(D)叉状PEG,在一个PEG链端或两个链端提供多个近端反应基团,其中X代表官能团。(E)多臂PEG,携带多羟基或官能团,八臂PEG是以三羟甲基丙烷为核心。
PEG化药物一般包括PEG、偶联的药物和/或连接剂(Linker)等部分组成。PEG化是通过各种偶联的化学成份和/或Linker来优化药物的溶解性、免疫原性和生物功能。PEG偶联的多样性来自于稳定或可水解键的使用。
图2 PEG修饰的主要结构
PEG化技术在上世纪70年代便已出现,最开始采用琥珀酰亚胺琥珀酸酯(succinimidyl succinate,ss)作为Linker,后来逐渐演变出多种Linker。近年来,随着研究和开发的不断深入,出现了PEG双官能团异端修饰药物(heterobifunctional PEG ,X-PEG-Y)等新型PEG化药物。
表1 PEG化技术变迁
注:SS:琥珀酰亚胺琥珀酸酯succinimidyl succinate);SC:琥珀酰亚胺碳酸酯(succinimidyl carbonate);NHS:N-羟基琥珀酰亚胺(N -hydroxy succinimide);T-PEG:2-巯基噻唑啉-PEG(2-mercaptothiazoline-PEG);UPEG:分支PEG。修饰性抗体定制,抗体测序及表达,标签蛋白纯化试剂盒
二、PEG修饰药物分类
PEG化修饰在药物方面的应用主要为PEG化蛋白药物、PEG化肽链型化合物、PEG化小分子药物、PEG化脂质体等方面。
2.1 PEG化蛋白药物(PEGylated protein drugs)
PEG化蛋白药物的修饰途径主要包括氨基修饰(包括N端氨基的酰基化修饰、赖氨酸侧链氨基的酰基化修饰、N端氨基的烷基化修饰)、羧基修饰、巯基修饰等。国内外PEG化蛋白药物的研究主要集中在腺苷脱氨酶、天冬酰胺酶、干扰素、粒细胞集落刺激因子、白细胞介素等方面。PEG化的大分子药物目前主要用于治疗癌症、慢性肾病、肝炎、多发性硬化症、血友病和胃肠疾病。
2.2 PEG化肽链型化合物(PEGylated peptide-based compounds)
多肽一般血浆半衰期短、口服生物利用度较低,这是由于体内存在大量的肽酶及其排泄机制,使肽失活、清除。这种不稳定性使得身体能够快速调节激素水平以维持体内平衡,但对许多治疗研发来说很不利。另外口服多肽的生物利用度低是由于口腔中消化酶可以分解摄入蛋白质的酰胺键,也能有效地切断肽激素的相同键,同时肽的高极性和大分子量也严重限制了肠通透性。用PEG对肽进行化学修饰,可以提高肽的多种理化性能和药代动力学性能,且制造成本增加极小。PEG修饰对肽药代动力学的影响具有潜在有益的生物分布变化,包括避免网状内皮系统(Reticuloendothelial System ,RES)清除,降低免疫原性,减少酶解和肾滤过损失。修饰性抗体定制,抗体测序及表达,标签蛋白纯化试剂盒这些效应可以显著增加肽在体内的半衰期,间接改善生物利用度,但不会对肽与配体的结合和活性产生不利影响。PEG化肽链型化合物,如沟降钙素、表皮生长因子,相比于母药,其半衰期长,生物活性高。特别是在PEG的定点修饰中,肽化合物比蛋白质更容易获得。在多肽化合物的PEG化研究中最常见应用的是mPEG。
2.3 PEG化小分子药物(PEGylated small molecule drugs)
目前许多小分子,尤其是抗肿瘤药物,可以采用PEG化技术进行修饰。PEG负载的小分子可以将其许多优良性质转移到偶联物上,使聚合物具有良好的生物相容性。不仅可以改善其溶解性和生物分布,还可以通过改变药物对酶和重要器官的暴露程度来减少其代谢和毒性。许多抗肿瘤药物都是通过高分子量PEG修饰来实现对肿瘤组织的靶向给药。伊立替康、喜树碱、多柔比星、紫杉醇等小分子抗肿瘤药经PEG 修饰制备成前药,其溶解性、体内循环半衰期、不良反应等均得到较大改善,同时具有明显的增强渗透和滞留效应,对肿瘤组织的靶向作用也有所提高。 修饰性抗体定制,抗体测序及表达,标签蛋白纯化试剂盒尽管PEG化的蛋白质和多肽取得了显著的成功,但PEG化小分子药物的开发进展有限。这可能是由于天然药物生物活性的丧失、化学偶联和纯化困难以及不良反应等问题。如PEG化喜树碱,Enzon制药公司已于2005年依据2b期临床试验的数据,宣布停止进一步开发此药物。临床试验结果显示,与商业配方相比,该结合物具有高度耐受性,毒性显著降低。然而,该结合物在体内的快速水解导致了与天然药物平行的毒性,导致该结合物的药物开发失败。
近期,中国科学院院士、中科院微生物研究所研究员高福团队与澳门大学健康科学学院教授邓初夏团队合作,在EMBO Reports上,发表了题为N-glycosylation of PD-1 promotes binding of camrelizumab的研究论文。研究发现,PD-1分子N-糖基化修饰呈现多态性;不同表达系统的PD-1的蛋白稳定性评价结果表明,糖修饰对PD-1分子的稳定性具有重要影响。研究人员分别对camrelizumab与不同表达系统的PD-1的亲和力进行测定,发现相比camrelizumab与原核表达的PD-1分子的亲和力,其与昆虫或哺乳动物细胞制备的PD-1亲和力低约200倍,他们推测这种亲和力的差异可能是PD-1分子在三种表达系统中的糖基化修饰不同导致的。
戴安生物:修饰性抗体定制,抗体测序及表达,标签蛋白纯化试剂盒
本站部分内容及图片来源于互联网,如有侵权请联系管理员删除,谢谢!